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Abstract Indexing and classification tools for Content Based Visual Information Retrieval

(CBVIR) have been penetrating the universe of medical image analysis. They have been

recently investigated for Alzheimer’s disease (AD) diagnosis. This is a normal ”knowledge

diffusion” process, when methodologies developed for multimedia mining penetrate a new

application area. The latter brings its own specificities requiring an adjustment of method-

ologies on the basis of domain knowledge. In this paper, we develop an automatic classi-

fication framework for AD recognition in structural Magnetic Resonance Images (MRI).

The main contribution of this work consists in considering visual features from the most

involved region in AD (hippocampal area) and in using a late fusion to increase precision

results. Our approach has been first evaluated on the baseline MR images of 218 subjects
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from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database and then tested on

a 3T weighted contrast MRI obtained from a subsample of a large French epidemiological

study : ”Bordeaux dataset”. The experimental results show that our classification of patients

with AD versus NC (Normal Control) subjects achieves the accuracies of 87% and 85%

for ADNI subset and ”Bordeaux dataset” respectively. For the most challenging group of

subjects with the Mild Cognitive Impairment (MCI), we reach accuracies of 78.22% and

72.23% for MCI versus NC and MCI versus AD respectively on ADNI. The late fusion

scheme improves classification results by 9% in average for these three categories. Results

demonstrate very promising classification performance and simplicity compared to the state-

of-the-art volumetric AD diagnosis methods.

Keywords Content Based Visual Indexing · Visual features · Circular Harmonic Functions

descriptors · SVM · Bag-of-Visual-Words · Late Fusion · Hippocampus · CSF

1 Introduction

Due to an enormous increase of the diversity and of the volume of biomedical image col-

lections and the large range of image modalities getting available nowadays, there is a need

for providing automated tools to index medical information. Indexing of medical images

using their visual content has shown its efficiency relative to textual approaches [24]. Image

content analysis and classification methodologies are now more and more used for medi-

cal information mining and retrieval [23] [18] with the aim of Computer-Aided Diagnosis

(CAD).

With the aging of population in developed countries, the dementia diseases become

a major problem of public health. Alzheimer’s disease (AD) is one of the most frequent

pathologies and its early detection is very important to achieve delay in the disease progres-

sion. Since AD affects brain cells and causes their degeneration, advances and evolution of

medical imaging techniques allow for studying structural changes in human brain and their

relationship with clinical diagnosis of AD. Medical information from Magnetic Resonance

Imaging (MRI) is used for detecting structural abnormalities of the human brain. In particu-

lar, structural MRI measurements help in detecting and tracking the evolution of brain atro-
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phy which is considered as a marker of AD process. In AD, the most common pronounced

change in the brain structure is the reduction of the volume of the hippocampus [38]. Several

works in the literature use extracted features from the hippocampus region of interest (ROI)

for the purpose of diagnosis [15] [9] [13] [16]. Most of the recently proposed approaches do

not take into account the visual morphological changes in brain regions, which is our goal.

Furthermore, the most of proposed methods for AD diagnosis are time consuming. They re-

quire a clinician intervention and suffer from ROI segmentation’s errors [15][10], as they are

built on the basis of a fine image segmentation. However, hippocampus is not sufficient for

the separation of subject with MCI and AD. Other features derived from known biomarkers

can be of help. Recent studies on AD diagnosis found that the quantity of cerebrospinal

fluid (CSF) in hippocampal region is a biomarker of AD [31]. Indeed, smaller hippocam-

pal volume is associated with greater CSF amount. Also, the authors in [40] proved that

the combination of CSF amount and MRI biomarkers provides better prediction than either

MRI or CSF alone.

The multimodal nature of multimedia data yielded an active research in fusion of hetero-

geneous data for classification purposes [4]. Nevertheless, an efficient application of image

classification methods in Computer-Aided Diagnosis of AD is not straightforward. Indeed,

the specific nature of MRI collections vs general purpose image databases requires an in-

depth study of the specific features that explain visible and invisible abnormalities for the

diagnosis process. Despite MR image comparison techniques have been proposed in this

area, visual features extraction methods have not been yet fully exploited to describe such

data. Hence, in this work we propose an automatic content based framework for recognition

of Alzheimer’s disease using MRI scans. There are 3 different categories of subjects to rec-

ognize: Normal Control (NC), Alzheimer’s Disease (AD) patients and the most challenging

group Mild Cognitive Impairment (MCI). We propose to automatically extract visual infor-

mation from MRI using the approximation of image signal by Circular Harmonic Functions

(CHF) [34]. To effectively represent content information extracted from the hippocampus

ROI, we use the Bag-of-Visual-Words (BoVW)approach [12] . We propose a late fusion
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scheme, where the probabilistic outputs of classifies on both local features and the amount

of CSF are fused to perform the final classification of the MRI scans.

The rest of the paper is organized as follows: Section 2 presents the related works. In

section 3, we describe the extraction of visual features with its particularities for this kind of

data. In section 4 we present the Late Fusion scheme. In section 5, we present experiments

and results and the final section concludes the work and outlines its perspectives.

2 Related work

MRI classification task plays an important role in medical image retrieval, which is a part of

decision making in medical image analysis. It involves grouping MRI scans into pre-defined

classes or finding the class to which a subject belongs. There have been several attempts in

the literature to automatically classify structural brain MRI as AD, MCI or NC. Among of

the most common methods we find Voxel Based Morphometry (VBM)[3] which is an auto-

matic tool. It allows an exploration of the differences in local concentration of gray matter

and white matter. Tensor Based Morphometry (TBM) [39] was proposed to identify local

structural changes from the gradients of deformations fields. Object Based Morphometry

(OBM) [21] was introduced to perform shape analysis of anatomical structures and recently,

features based morphometry (FBM) [35] was proposed as a method for relevant brain fea-

tures comparison using a probabilistic model on local image features in scale-space. Some

other studies focused on measuring morphological structure of a Region of Interest (ROI)

known to be affected by AD such as the hippocampus region. In research studies that an-

alyze hippocampus atrophy,we can identify the following image analysis methods. In [9]

[11] [19], the authors automatically segment the hippocampus and use its volume for the

classification. In addition to volumetric methods, several surface-based shape description

approaches have been proposed to understand the development of AD. In [15] [16] [13],

shape information in the form of spherical harmonics (SH) has been used as features in the

support vector machine (SVM) classifier. In [32], Statistical Shape Models (SSMs) have

been used to model the variability in the hippocampal shapes among the population. Hence,

the image-based diagnostic of AD relies mainly on analysis of hippocampus. Nevertheless,
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the overall volumetric or shape analysis of the hippocampus does not describe the local

change of its structure, which is helpful for diagnosis. ROI-based methods are time consum-

ing and observer-dependent. Moreover, most of the approaches cited above were proposed

for group analysis and cannot be used to classify individual patients. In order to overcome all

these limitations, computer vision tools and visual image processing techniques have been

developed to allow an automated detection of atrophy in the ROI.

Recently, Content Based Visual Information Indexing methods have been widely used

for medical image analysis. But, few are the works that address the visual content of brain

scans to extract information relative to AD. In [1], the authors are focusing on integrating

different kinds of information, including textual data, image visual features extracted from

scans as well as direct user (doctor) input. In general, features can contain coefficients of a

spectral transform of image signal, e.g. Fourier or Discrete Cosine Transform coefficients

(DCT), statistics on image gradients [29] [14], etc. Features used in [1] to describe brain

images are local binary patterns (LBP) and DCT. [2] uses visual image similarity to help

early diagnosis of Alzheimer. [2] [28] prove the performance of user feedback for brain im-

age classification. In the related work [22], Circular Harmonic Functions and Scale Invariant

Features Transform (SIFT)[20] descriptors are computed around the hippocampus region.

Then several modes of classification are used to compare images. In [37], the authors pro-

pose a ROI retrieval method for brain MRI, they use the LBP and Kanade-Lucas-Tomasi

features to extract local structural information. Some works [14] [29] on MRI classification

for AD diagnosis evaluate the suitability of the Bag-of-Visual-Words (BoVW) approach for

automatic classification of MR images in the case of Alzheimer’s disease. In [14], the au-

thors use SIFT descriptors extracted from the whole subject’s brain to classify between brain

with and without AD. In [29], the authors show that the Bag-of-Features (BOF) approach

is able to describe the visual information for discriminating healthy brains from those suf-

fering from the AD. However, both works do not address the MCI case which has become

an important construct in the study of AD. The BoVW model represents a whole brain scan

or a ROI as a histogram of occurrence of quantized visual features, which are called visual

words. The latter received the name of visual signature of an image/ROI.
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The choice of the initial description space (features) is of a primary importance as it has

to be adapted to the nature of the images. Indeed, despite the good performances of SIFT

features reported in [29], there is still place for an intensive investigation of the descrip-

tors choice. SIFT or their approximated version SURF[5], widely used in classification of

general purpose image data sets, are not optimal for MRI with the lack of pronounced high

frequency texture and clear structural models. Here, based on the work of [22] [6], we resort

to Circular Harmonic Functions (CHF) which give interesting approximations of blurred

and noisy signal as we have it in MRI. As shown in [34], these descriptors in some cases are

superior to SIFT which is a current benchmark. Furthermore, these features as computed on

patches inside the ROI or selected on the whole brain, convey local structural information

of image signal.

Pattern recognition techniques are widely used in the context of AD diagnosis and in par-

ticular Support Vector Machines (SVM) classifiers have proven to be efficient. High recog-

nition rates are achievable (SVM) focused on brain ROI [15][13] [16] [17]. In this paper,

we propose a pattern recognition framework to detect Alzheimer’s disease from structural

MR images. We extract only visual features from the hippocampal region to emphasize the

difference or similarity of subjects with respect to AD. Two kinds of features are extracted :

visual local descriptors using the Circulars Harmonic Functions and the amount of CSF pix-

els in the hippocampal area. These features are of different nature. Hence, it is appropriate

to deploy the multimedia fusion approaches, such as reported in [4] despite we are working

with the same imaging modality.

3 Visual content description

3.1 Extraction of visual features from hippocampal area

Visual features extraction is a common step in the overall processing chain yielding im-

age interpretation and classification. Applied to MRI, it has to be populated by particular

techniques already in use for brain MRI analysis. As the visual information has to be ex-

tracted from a specific anatomical region, an atlas-based selection of this region has to be
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performed. In brain image analysis, such an atlas called Automated Anatomical Labeling

(AAL) [36] does exist for a normalized ”statistical ” brain, a so-called ”template” MNI 1.

Hence, the first step as depicted in Figure 1, consists in normalizing the brain image to be

analyzed with regard to this template.

approche.png

Fig. 1 Visual feature extraction from the hippocampal ROI

3.1.1 Image normalization

The normalization of the available 3D brain data is an adjustment of overall size and orienta-

tion to the template MNI. Linear (affine) and non-linear alignment is possible. In our work,

we choose to apply an affine registration because we look for preserving a specific pattern

of the ROI and avoiding features deformation. Affine registration is done using the Montreal

Neurological Institute template (MNI)512. Statistical Parametric Mapping (SPM)2 and the

VBM toolbox 3 are used to fulfill the registration.

3.1.2 Hippocampus ROI extraction

To extract the hippocampus ROI, we use the AAL Atlas. The template-aligned 3D MRI

of a brain is superimposed on the 3D atlas and only voxels which are labeled in AAL as

hippocampal are selected (see the second block in Figure 1). Once the hippocampal region

has been roughly delimited, the features can be extracted and signature built.

1 http://www.mni.mcgill.ca/
2 (Welcome Laboratory of the Department of Cognitive Neurology, Institute of Neurology, London, United

Kingdom, http://www.fil. ion.ucl.ac.uk./spm/)
3 http://dbm.neuro.uni-jena.de/vbm
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3.1.3 Signature generation

After brain alignment and ROI’s selection, we compute image features. As it was already

noted, we need to extract only those features, which contain visual information related to

the presence or absence of the AD. In this work, Circular Harmonic Functions (CHF) were

used for selection of contrasted patterns in brains as it is the case in [6].

Circular Harmonic Functions (CHF)

Gauss-Laguerre Harmonic Functions are complex-valued radial profile functions multiplied

by complex exponent:

Ψ(r,θ ;σ) =Ψ
|α|

n (
r2

σ
)eiαθ (1)

Their radial profiles are Laguerre functions:

Ψ
|α|

n (x) =
1√

n!Γ (n+α +1)
x

α
2 e
−x
2 Lα

n (x) (2)

where n = 0,1, ...;α±1,±2... and Lα
n (x) are Laguerre polynomials. r, θ are polar coor-

dinates, σ is a scale parameter and Γ is a gamma function.

Lα
n (x) = (−1)nx−α expx d

dxn (x
n+α e−x) (3)

LG-CHF is complete orthogonal set of functions on the real plane. Thus, the image

I(x,y) can be expanded in the analysis point x0 , y0 for fixed scale σ in Cartesian system.

The coefficients of the partial expansion of local neighborhood can be used as a feature de-

scriptor. The advantages of these features are such that they capture both the direction and

smoth variations of image signal. Their draw back is in a rather slow convergence, hence

a sufficient number of coefficients has to be retained for image description. The number of

coeficients retained define the dimensionnality of the descriptor. The reasonable dimension-

ality of 150 coefficients (see [6][22] ) was used in the present work. Hence the dimension of
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the descriptor is comparable with that one of conventional SIFT. More mathematical details

about the CHF descriptors can be found in [33] [34].

Fig. 2 Illustrating of feature placement of local CHF features on the hippocampus ROI (axial, coronal and
sagittal projections) of an MRI scan from the ADNI dataset

Figure 2 shows an illustration of CHF features extraction on hippocampus. The ex-

tracted feature points ”support areas” (i.e. where the descriptors are computed) are denoted

with yellow circles. Here, the scans are densely sampled in a selected hippocampal ROI by

a grid of circular patches and the signal decomposition on a CHF basis is computed for each

patch. We perform selection sampling and 2D CHF transform computation on a slice-by-

slice basis. Hence the whole description of the hippocampal volume is a collection of 2D

CHF descriptors for each slice and each projection of the selected volume. The CHF coef-

ficients extracted from several areas overlapping with the mask are different and depend on

the signal presented in the ROI (atrophy or not).

Recently, Bag-of-Visual-Words (BoVW) approach has shown its power in this field,

modeling the hippocampus ROI as a set of local features[6]. The role of BoVW model is

to cluster extracted features from hippocampus in order to build a visual vocabulary. The

region’s shape differs from one projection to another. Thus, we choose to perform clustering

3 times from different projections (sagittal, axial and coronal) and to generate one visual

vocabulary per projection. Firstly, all features f s
n,i , here n and i stand respectively for slice

and feature indexes, are extracted from the ROI on all slices for the sagittal projection then

features are clustered by k-means algorithm. The same is done for axial and coronal pro-
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jections. All features f s
n,i, f a

n,i , f c
n,i and centers of clusters csk ,cak, cck obtained by k-means

(where K is the codebook size) here have the same dimensionality of the descriptor being

used. In case of SIFT it is 128 and for CHF it is 150. According to the BoVW approach, we

then call cluster centers ”visual words”. Once the visual words have been determined, the

image signature per projection is generated. Each feature is assigned to closest visual word

using the distance d( f s
n,i,cs) , in our case the Euclidean distance is used. Then each pro-

jection is represented by a normalized histogram of occurrence of visual words. The image

signature h is built by concatenating the histograms from all projections h = [hshahc].

3.2 CSF volume computation

The increased quantity of CSF in the hippocampal region is an important visual biomarker

for AD diagnosis. Indeed in the case of AD, the hippocampus shrinks and the liberated

volume is filled with CSF. To analyze the shrinkage, we count the CSF voxels in the region

of the hippocampus. In the MRI T1 scans the CSF is appearing as dark areas, thus we can

select it just by thresholding.

B∗(x,y,z)< Tdark

Fig. 3 CSF on the hippocampus region : a) AD brain, b) Healthy : Coronal projection brain
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But due to the large difference in brightness and contrast of MRI scans, all scans need to

be transformed in such a way that, similar intensities will have similar tissue-specific mean-

ing. In our work, we perform the scale normalization method proposed in [25]. To select the

optimal threshold, the following procedure is performed: all voxels from the hippocampus

regions from all scans are collected together and the threshold between dark (hyposignal)

and bright (hyper signal) voxels is estimated using Otsu method [26]. In fact, one threshold

for all images is computed. But normal patients have a little CSF amount in the hippocampus

area. Thus, to ensure correct delineation when computing the threshold by Otsu method, we

add additional regions where CSF is always present: The Lateral Ventricles (LV) by refer-

ring to the domain knowledge. In addition, adding some pixels from the Lateral Ventricles

may improve the discrimination results because AD patients show more CSF in the LV

than do MCI and NC subject. Using this procedure, the volume of the CSF in a normalized

hippocampal area is measured in a quantity of voxels. It will be later denoted by V . Fig-

ure 3 illustrates the results of detection of CSF (in green) in hippocampal region. The CSF

(green color) is situated around the hippocampus (red color) boundaries. The added region

is marked with a yellow rectangle. It can be seen that the quantity of CSF in the case of

AD (a) is higher. Hence the quantity of CSF in the hippocampus area is determined for all

scans in the database and Bayesian classifier is trained using this parameter to distinguish

the subjects.

4 Classification approach

The classification approach we design is aimed to combine the two sources of information

: visual signature and the volume of CSF in a global decision framework to discriminate

between AD and NC, MCI and NC and AD and MCI subjects. Taking into account the

advances in multimedia fusion research in the literature, we propose to do it by a late fusion

scheme. The overall diagram of the approach is presented in Figure 4. The CHF-based visual

signatures are first classified between the categories two by two with a state-of-the art SVM

approach with an Radial Basis Function (RBF) kernel. The classification of subjects on the

basis of the CSF volume is performed by a Bayesian classifier. Indeed, we have here a scalar
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feature and the class probabilities can reasonably be a priori trained (AD are much more

rare in patients cohorts, than NC and MCI for instance). Both classification schemes give

a decision output. We transform it into an homogeneous probabilistic output and form the

second order feature vectors of dimension 2. They are then submitted to the trained SVM

binary classifier for each classification problem given above (AD vs NC, NC vs MCI and AD

vs MCI). We stress that in this work we address a binary classification problem as the goal

is to assess the discriminative power of our scheme which uses both hippocampal shape

expressed by CHF features and CSF volume biomarkers in an automatic classification of

cohorts. We now present the details of each step of the approach.

Fig. 4 Late Fusion scheme

4.1 Support vector machines classifier for visual signatures classification

Hence, we solve a set of binary classification problems AD vs NC, NC vs MCI and AD vs

MCI. The unknown subject is classified by maximizing the score of these three classifiers.

We use the well known SVM classifier [7] in the visual description space of signatures built

with CHF descriptors. At training step it separates a given set of training data of instance

label pairs (xi,yi), i = 1, ..., l where xi ∈ Rn and y ∈ {1,−1} by maximizing the distances to
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the hyperplane that separates the two classes in a kernel-transformed space. Then the classi-

fication of unknown data is performed in this space accordingly to their position with regard

to the hyperplane. For more details on SVMs we refer the reader to [30]. In this work we use

the RBF kernel defined by: exp(−γ ∗ |u− v|2). In many settings, for a given input sample

and for a given classifier we are more interested in the degree of confidence that the output

should be +1. In such cases it is useful to produce a probability P(y = 1|x). Given k classes,

for any x, the goal is to estimate

pi = P(y = i|x), i = 1....k

We first estimate pairwise class probabilities by Platt approximation [27]

ri =
1

1+eA fi+B

where f is the decision value at x. A and B are estimated by minimizing the negative log

likelihood of training data (using their labels and decision values). For each binary classifier

we will have the probabilistic output PSV Mi(x).

4.2 Bayesian classifier for CSF based features Classification

The Bayesian classifier uses the parametric model of pdf for each class which we suppose

Gaussian. It gives the most likely class for a given observation. Let V denote the CSF volume

for a given subject, Y is the subject class label (Y = AD,NCorMCI), and C = 2 (binary

classification) is the number of classes. The problem consists in classifying the sample v to

the class c∗ maximizing P(Y = c|V = v) over c = 1, ,C. Applying Bayes rule gives:

P(Y = c|V = v) = P(V=v|Y=c)P(Y=c)
P(V=v)

and reduces the original problem to:

c∗ = argmaxc=1,...CP(V = v|Y = c)P(Y = c)

we denote the related probability of a sample by PBayesi(x)
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4.3 SVM-based late fusion scheme

The probabilistic outputs of SVM-based signature classification and CSF volume-based

Bayesian classification are now available for each training sample in all binary classification

problems . We form the 2 dimensional feature vectors

Z(x) = (PSV Mi(x),PBayesi(x))
T

and the training set pairs Z(x),y(x). Finally, the second SVM classifier in cascade is trained

with a linear kernel using Leave-One-Out Cross-Validation.

Metrics used to evaluate final late fusion classification performance are :

– Accuracy (Acc) =
(T P+T N)

(T P+T N +FN +FP)

– Sensitivity (Sen) =
T P

(T P+FN)

– Specificity (Spe) =
T N

(T N +FP)

Here T P (True Positives) are AD patients correctly identified as AD, T N (True Neg-

atives) are controls correctly classified as controls, FN (False Negatives) are AD patients

incorrectly identified as controls and FP (False Positives) are controls incorrectly identified

as AD. Similar definition is hold for other binary classification problems NC vs MCI and

AD vs MCI.

5 Experiments and results

5.1 MRI data

Data used in the preparation of this article were obtained from the Alzheimers Disease Neu-

roimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003

by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and

Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceuti-

cal companies and non-profit organizations, as a 60 million, 5- year public-private partner-

ship. The primary goal of ADNI has been to test whether serial magnetic resonance imaging

(MRI), positron emission tomography (PET), other biological markers, and clinical and neu-

ropsychological assessment can be combined to measure the progression of mild cognitive
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impairment (MCI) and early Alzheimers disease (AD). Determination of sensitive and spe-

cific markers of very early AD progression is intended to aid researchers and clinicians to

develop new treatments and monitor their effectiveness, as well as lessen the time and cost

of clinical trials. The Principal Investigator of this initiative is Michael W. Weiner, MD, VA

Medical Center and University of California San Francisco. ADNI is the result of efforts of

many co-investigators from a broad range of academic institutions and private corporations,

and subjects have been recruited from over 50 sites across the U.S. and Canada. The initial

goal of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and

ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55 to 90, to par-

ticipate in the research, consisting of cognitively normal older individuals, people with early

or late MCI, and people with early AD. The follow up duration of each group is specified in

the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-

1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-date information, see

www.adni-info.org.

In this work, we selected from the ADNI dataset the same data as [40], with the same

demographic information for each of the diagnosis groups (NC, AD and MCI). The data

sample consists of 218 structural MRIs from the ADNI dataset with 35 Alzheimer’s Disease

(AD) patients, 72 cognitively normal (NC) and 111 Mild Cognitive Impairment (MCI) sub-

jects. Images are standard 1.5 T screening baseline T1 weighted obtained using volumetric

3D MPRAGE protocol.

The second source of data is a study of AD on a real cohort, we call it ”Bordeaux dataset”

4 [8] comprising 37 structural MRI (16 AD and 21 NC).

5.2 Results and Discussion

5.2.1 CSF volume computation

In this subsection we give the figures showing the credibility of CSF quantity biomarker

extracted with our method (see 3.2). Table 1 presents the quantities of CSF voxels within

4 http://www.incia.u-bordeaux1.fr/
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the hippocampal ROI. Indeed, from Table 1, one can see that the amount of CSF increases

from NC to AD.

Table 1 CSF amounts

Class Volume ( mean ± SD )

NC 212 ± 101
MCI 316 ± 104
AD 402 ± 126

5.2.2 Classification results

Table 2 presents classification performance. It summarizes classification results of AD ver-

sus NC, MCI versus NC and MCI versus AD for the ADNI subset. We also present classifi-

cation results of AD versus NC obtained on the ”Bordeaux dataset”. Since the latter does not

contain MCI cases, relative classification problems are not addressed in our experiments.

Firstly, we compare the performance on CHF visual features (3.1.3) with regard to con-

ventional SIFT and SURF ones. It can be seen that the proposed CHF features systematically

outperform SIFT and SURF in all three quality metrics: Accuracy, Specificity and Sensitiv-

ity. We note that the SURF features with the lowest dimension (64) between three classes

of descriptors are not applicable in our problem. In fact, they are less precise than SIFT and

give a very low sensitivity (25.73%) in a difficult case of MCI vs AD. The CHF descrip-

tors used are of a comparable dimension (150) with SIFT (128), but outperform them. The

results presented in the Table 2 for visual features alone, correspond to the optimal sizes

of visual vocabularies we estimated experimentally optimizing the accuracy criterion. For

SIFT features, the size of visual dictionary per projection was 100 yielding to the dimen-

sion of 3*100 of the BoVW. For SURF features, it was of 150 yielding the signature size of

3x150. Finally, for the CHF features, the dictionary consisted of 150 visual words yielding

respectively the dimension of the visual signature of 3x 150. The low cardinality of the op-

timal codebook can be explained by a reasonably limited number of descriptors. Indeed, the

dense sampling is performed only on the hippocampal ROI in a limited number of slices (70

for sagittal, 97 for axial and 42 for coronal projections respectively).
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Table 2 Classification results

ADNI dataset Bordeaux dataset

AD vs NC NC vs MCI MCI vs AD AD vs NC

3*Hippo VF (CHF) Acc 85.05% 74.32% 58.9% 79%

Spe 94.45% 85.59% 63.97 % 80%

Sens 65.72% 57% 42.86 % 70%

3*Hippo VF (SIFT) Acc 79.44 % 72.14% 52.05% 67.56%

Spe 93 % 84.69% 55.85 % 76.19 %

Sens 51.43% 52.78% 40 % 56.25 %

3* Hippo VF (SURF) Acc 81.3% 73.23% 50% 66.67 %

Spe 91.67% 83.78 % 57.6% 40%

Sens 60% 56.95% 25.73% 85.71%

3* CSF volume Acc 78.5 % 58.47 % 62.33% 80%

Spe 72.29% 48% 67.39 % 72%

Sens 70.5% 66% 60% 60%

1* Hippo VF (CHF)+ CSF Acc 87% 78.22% 72.23% 85%

Spe 100 % 83.34% 70 % 81%

Sens 75.5 % 70.73% 75 % 76%

Using visual features of the hippocampus on the ADNI subset, we achieved an accuracy

of 85.05% and 74.32% respectively for AD versus NC and NC versus MCI classification.

However, structural change on hippocampus is not sufficiently accurate on its own to be

an absolute diagnostic criterion to separate AD from MCI cases. In the case of MCI ver-

sus AD classification, performance drops to 58.9%. We aimed to deal with this challenging

category (MCI). To enhance the results, CSF amount measurement was added. The CSF

amount classification using Bayesian classifier gives an accuracy of 62.33% and 58.47%

for the recognition of the MCI cases respectively from the AD and NC subjects. Moreover,

we note that adding supplementary voxels from the Lateral Ventricles helps to boost the

performance of CSF delineation and thus improve the classification results. Indeed, the ac-

curacy of AD vs NC classification by CSF amount increases from 74.1% to 78.5%. Hence,

we retained this finding for classification and all results in Table 2 were obtained with this

approach. Since those two kinds of features were extracted from the same brain (hippocam-
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pus), our assumption that they could provide complementary information for classification

was correct.

For MCI versus AD classification, using the late fusion, we achieved 72.23% of accuracy

compared to 58.5% using only CHF features. For the MCI versus NC classification, accuracy

increases from 74.32% to 78.22%. As we can see from table 2 the sensitivity values of both

AD vs MCI and NC vs MCI classification undergoes a significant increase ( from 42.86%

to 75% for the MCI vs AD cases for example) when we use the late fusion. These results

show that CSF volume improves the classification accuracy by an average of 9% when

combined with the visual signatures especially for the MCI cases classification which is the

most challenging task due to the strong heterogeneity of this class.

In a second part of experiments, we selected 15 MRI scans of AD (60± 3 years old) and

12 aging subject from the Normal control category ( 80± 6 years old ) of the ADNI dataset.

Our approach distinguishes well between Alzheimer’s disease and the aging normal control

subjects with an accuracy of 85% and sensitivity of 76%. Hence, adding CSF amount not

only improved MCI cases classification but also helped to separate old healthy subjects from

those suffering from AD.

We compare our work with results obtained in [40]. First, the authors used the volume

and the shape of hippocampus to perform subject categorization and second, they added CSF

bimomarkers and volume and shape of the lateral ventricles to improve results in the case

of AD and MCI recognition. Our content based approach outperforms all achieved results

on [40]. For example better classification accuracy was achieved in AD versus MCI and NC

versus MCI classification tasks is 69.6% and 72% respectively, which is lower than results

obtained in our present work. In the case of AD or MCI categorization we reached better

results (accuracy of 72.23%, a 70% of specificity and of sensitivity 75% ) compared to [40]

in which the authors obtained only 69.9% of accuracy, 68.6% of specificity and of sensitivity

70.7%. We can conclude that combining visual features of AD biomarkers performs better

than using volume or shape. Also, in [40], the authors use the freesurfer software to select

region which is a very time consuming (about hours of processing) task contrarily to the

atlas mapping used in our work. Therefore, the ability to efficiently classify MCI and AD
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patients based on visual features of structural MRI might shed light on the ability to predict

the conversion from MCI to AD, which is of clinical interest.

6 Conclusion

In this paper we proposed a simple and robust classification approach of MRI scans for

Alzheimer’s disease diagnosis. The approach is based on visual content description of anatom-

ical structure of a brain region involved in AD ( hippocampal area). We proposed a late

fusion of classification results on two biomarkers: hippocampus and CSF. The experiments

showed that combining hippocampus features and CSF amount classification gave better

accuracy especially when discriminating between AD and MCI than when using either vi-

sual features or CSF volume separately for discriminating between AD and MCI than using

either visual features extraction or CSF volume computation separately. We also demon-

strated that the proposed method provides better classification accuracy compared to other

volumetric methods. In the perspective of this work we plan to use multiple ROIs, but also

multiple MRI modalities in the established classification framework.
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